10.2.1 Calculate and predicting the genotype and phenotype of offspring of dihybrid crosses involving unlinked autosomal genes.


The following is a worked example of a dihybrid cross. Other examples are the set for you to calculate with answers available. The example is based on Mendel's pea crosses and begins with 'true' breeding or homozygous plants for two unlinked genes. The phenotype which is used includes the colour and the texture of the seeds of the pea plant.

dihybrid cross

Phenotypes: P1 Smooth Yellow Seeds X P2 Rough Green Seeds

The chromosomes are shown as homologous pairs but not as bivalents.

  • Smooth is dominant to Rough

  • Yellow is dominant to green


  • Reduces the chromosome number and randomly assorts the alleles for each gene.

  • As the parents are homozygous at both gene loci they each produce only one type of gamete.


  • Random fertilisation of the gametes.


  • The offspring are heterozygous at each gene loci. Notice the chromosome number is restored to the that of the parents.

  • New homologous pairs are produced


F1 cross
The offspring are crossed = F1 x F1 (F1 self)

Both parents have identical phenotype for the two characteristics (Smooth and Yellow) and are heterozygous at both gene loci.




dihybrid meiosis







dihybrid ratio

The phenotypic ratio for this cross is:

9 Smooth Yellow: 3 Smooth green: 3 Rough Yellow: 1 Rough Green

This is the classic dihybrid ratio, which indicates that both parent are heterozygous at both loci.




Dihybrid Ratio:


Test Cross:

Heterozygotes(SsYy) and Homozygote dominants (SSYY) cannot be distinguish by observing their phenotypes. Mendel however developed a test cross for suspected heterozygotes.

dihbrid test cross


The test population here is the heterozygote.

With the pea plants Mendel cold not be sure that the smooth and yellow seeds are heterozygote or rather it was a homozygous dominant.

The suspect heterozygote is crossed with a homozygous recessive at both gene loci. (ssyy)



Meiosis produces four gametes in the heterozygote which illustrates the random orientation of chromosomes in metaphase I

Meiosis only produces on type of gamete for the homozyote double recessive.

Random fertilisation of the gametes produces four possible genotypes for the offspring.

This test would have been performed on more than one cross so that the ratio of the offspring can be compared on a reasonable sample size.


Offspring genotypes show four different types.

The phenotype ration is 1 : 1 :1 : 1

The is the dihybrid test ration (back cross ratio).






Calculation: Mendel's pod colour and seed colour

  1. The Pea plants (Pisum sativum) after flowering produces a pod that is either green or yellow.

  2. The seeds inside also show a colour difference of green and yellow.

  3. The inheritance of two characteristics (pod colour, seed colour)is being followed.

  4. The gene for pod colour and seed colour are on different homologous pairs ( not linked).

  5. Each gene has two alleles and shows complete dominance.

  6. With characteristics like these it important to have a clear allele key to avoid confusion.

  7. The cross begins with a homozygous dominant plant for both pod colour and seed colour.

pod and seed inheritance


P1 Green Pod, Yellow seed X P2 Yellow pod, Green seed

Allele Key:

G- Green pod
g- Yellow Pod

Y-Yellow seed
y-green seed

Parents are Homozygous double dominant X Homozygous double recessive













F1 cross







dihybrid ratio


Meiosis, metaphase I and the random orientation of the homologous pairs on the equatorial plane, means that there are four possible gamete genotypes, all equally possible.

The means that since both parents are heterozygous for both alleles then the Punnet square is a 4 X 4 grid.

Each box represents a possible fertilisation of a probability 1/16.

This does not mean that there will be 16 offspring. The table is a probability chart for the possible genotypes of each fertilisation.

Eg GGYY, there is only one such genotype in the table. The probability of this genotype in the population is 1 in 16.

In a population of 160 offspring we would predict that 10 would have the GGYY genotype. The same logic can be applied to other genotypes. However remember that each new fertilisation shares the same probabilities.

There are nine possible genotypes in the population of offspring.

Mendel could not observe genotypes, rather he could count the phenotypes. This type of F1 cross produces what is known as the

F2 Dihybrid ratio = 9: 3 : 3 : 1

Such a ratio, indicates a cross between two heterozygote, 2 genes. unlinked, complete dominance at both loci.






Dihybrid Crosses:

Other dihybrid calculations are a variation on the above core crosses. Students should obtain and calculate as many examples as possible. However always try to make the connections between the cross and the process of meiosis, random orientation and metaphase I. Do not fall into the trap of memorising the pattern of these crosses, this will fail you in the exam. Understanding is the key.


Additional calculations are available


10.2.2 Distinguish between autosomes and sex chromosome.

In some species there is one homologous pair which carry genes that determine gender. THis work has already been covered in the section on sex chromosomes.

There are other genetic conditions (also covered in topic 4) associated with the so called 'sex linked" conditions.



10.2.3 How crossing over between non-sister chromatids of a homologous pair in prophase I results in an exchange of alleles.

Read the next section 10.2.4 first and understand the concept of a linkage group which is key to understanding of this particular assessment statement.



The diagram shows the loci of genes A and B.

The alleles A is linked to B, a is linked to b.

The homologous pairs are held together like this during prophase I.




cross overThe crossover point occurs above the loci for gene A and below the gene loci for A.

The position at which the exchange occurs is called the chiasma.

The recombinants will form between non-sister chromatids which are crossing over.

The homologous pairs remain attached at the chiasma until anaphase I when they are pulled apart.


recombinantsAfter anaphase II, the chromatids are separated.

The linked genes are:


Genetic crosses:

However most cells of the cell undergoing meiosis to form a gamete will not cross over between these two points.


When cross over occurs there will be low frequency of recombinants produced.



10.2.4 Define linkage group.

The genotypes of an organism is AaBb. This looks like a dihybrid such as those in the sections above. The two genes would be on separate homologous pairs, however there is an alternative and this is known as linkage.

linkage groupThese two genes are actually on the same chromosome.

The A allele is linked to the B allele along the length of DNA.

The a allele is linked to the b allele along the length of DNA.

In the image take after S-phase, the homologous pair is aligned as it would be found in Prophase I of meiosis.

It might be predicted that during gamete formation of fertilisation that the A allele will be followed by the B allele. This would be more like carrying out two simultaneous monohybrid crosses.




10.2.5 Crosses between two linked genes.

Example: Sweat Peas (Lathyrus odoratus)

This famous example comes from the work of W. Batson who rediscovered the work of Mendel and carried out his own experiments in the early 20 Century.

Allele Key:

  • Flower colour Purple (P) and Red (p)

  • Pollen grain shape, Long (L) and short (l)

A cross was made between a plants that where heterozygotes at both gene loci (PpLl).

When dealing with linked genes the linkage group is drawn on the horizontal with a line representing the chromosome. Using the above cross the cross would be represented.

linkage cross


Parental phenotypes are the same PpLl being heterozygous at both gene loci.

If the gene for flower colour and pollen grain shape are linked then the genotypes are shown as left.


The gamete genotypes are shown to the left with the alleles for flower colour and pollen grain shape shown linked by the horizontal line.


The possible recombinants from cross over are shown for one parent only.

These recombinant gametes will be at low frequency.


The grid shows the cross with the possible fertilisations in the boxes.

There four expected genotypes.

There are four recombinant genotypes but cannot be observed from phenotypes.

There are two recombinant phenotypes which would be actually observed during the experiment.









Batson's results:



The result of W Batson's cross showed that the result are neither dihybrid and unlinked (9:3:3:1)or linked with no linkage (3:1)

The result shows a rough 3:1 ratio of Purple/Long : Red/Short

There are also recombinant phenotypes at much lower frequency.





10.2.6 Identification of offspring as recombinants in a dihybrid cross involving linked genes.

Recombinants are recognised by:



Click4Biology: Topic 10.2 Dihybrid crosses and gene linkage


Dihybrid crosses and gene linkage.

10.2.1 Calculate and predicting the genotype and phenotype of offspring of dihybrid crosses involving unlinked autosomal genes.

10.2.2 Distinguish between autosomes and sex chromosome.

10.2.3 How crossing over between non-sister chromatids of a homologous pair in prophase I results in an exchange of alleles.

10.2.4 Define linkage group.

10.2.5 Crosses between two linked genes.

10.2.6 Identification of offspring as recombinants in a dihybrid cross involving linked genes.